当前位置: > 在函数对y=f(u),u=g(x)中,f(u)=根号u,g(x)=lg(1/(2+1))是否可复合成 f(g(x))...
题目
在函数对y=f(u),u=g(x)中,f(u)=根号u,g(x)=lg(1/(2+1))是否可复合成 f(g(x))

提问时间:2020-12-14

答案
g(x)=lg(1/(2+x)) 定义域:x+2>0 x>-2
f(u)=sqrt(u) 定义域:u>=0
f(g(x)) 中,g(x)>=0 即:lg(1/(2+x))>=0 1/(2+x)>=1 0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.