当前位置: > 已知{an}是公比为q的等比数列,且a1,a3,a2成等差数列. (Ⅰ)求q的值; (Ⅱ)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由....
题目
已知{an}是公比为q的等比数列,且a1,a3,a2成等差数列.
(Ⅰ)求q的值;
(Ⅱ)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.

提问时间:2020-12-14

答案
(1)由题意可知,2a3=a1+a2,即2aq2-q-1=0,∴q=1或q=-12;(II)q=1时,Sn=2n+n(n−1)2=n(n+3)2,∵n≥2,∴Sn-bn=Sn-1=(n−1)(n+2)2>0当n≥2时,Sn>bn.若q=-12,则Sn=−n(n−9)4,同理Sn-bn=−(n−1)(n−10)4...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.