当前位置: > 设完全平方数y²是11个相继整数的平方和,则y的绝对值的最小值是?...
题目
设完全平方数y²是11个相继整数的平方和,则y的绝对值的最小值是?

提问时间:2020-12-13

答案
y^2=(x-5)^2+(x-4)^2+(x-3)^2+(x-2)^2+(x-1)^2+x^2+(x+1)^2+(x+2)^2+(x+3)^2+(x+4)^2+(x+5)^2
=11x^2+2*(1+4+9+16+25)
=11x^2+110
=11(x^2+10)
y^2是完全平方数,11是质数,所以x^2+10=11n
当n=1时,y^2最小值为121
y的绝对值的最小值是11
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.