当前位置: > 当x→0时,求ln(1+e^(2/x))/ln(1+e^(1/x))的极限...
题目
当x→0时,求ln(1+e^(2/x))/ln(1+e^(1/x))的极限
为什么当x→0+时,极限为2 当x→0-时,极限为0

提问时间:2020-12-13

答案
当x→0-时
原式=lim[e^﹙2/x﹚]/[e^[1/x﹚]=lime^﹙1/x﹚=0
当x→0+时
原式=lim[2/x+1/e^﹙2/x﹚]/[1/x+1/e^﹙1/x﹚]=lim[2e^﹙2/x﹚+x]/[e^﹙2/x﹚+xe^﹙1/x﹚]
=lim[2e^﹙2/x﹚]/[e^﹙2/x﹚]=2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.