题目
求不定积分∫ x arcsin(x/2) dx
提问时间:2020-12-13
答案
用分部积分法+三角换元法:
∫ xarcsin(x / 2) dx
令y = x / 2
= 4∫ yarcsiny dy
= 2∫ arcsiny d(y²)
= 2y²arcsiny - 2∫ y²d(arcsiny)
= 2y²arcsiny -2∫ y² / √(1 - y²) dy
令y = sinA,dy = cosA dA
√(1 - y²) = √(1 - sin²A) = cosA
= 2y²arcsiny -2∫ sin²A / cosA * cosA dA
= 2y²arcsiny -∫ (1 - cos2A) dA
= 2y²arcsiny -(A - sin2A / 2) + C
= 2y²arcsiny - A + sinAcosA + C
= 2y²arcsiny - arcsiny + y√(1 - y²) + C
= (2 * x² / 4 - 1)arcsin(x / 2) + (x / 2)√[1 - (x / 2)²] + C
= (1 / 2)(x² - 2)arcsin(x / 2) + (x / 4)√(4 - x²) + C
∫ xarcsin(x / 2) dx
令y = x / 2
= 4∫ yarcsiny dy
= 2∫ arcsiny d(y²)
= 2y²arcsiny - 2∫ y²d(arcsiny)
= 2y²arcsiny -2∫ y² / √(1 - y²) dy
令y = sinA,dy = cosA dA
√(1 - y²) = √(1 - sin²A) = cosA
= 2y²arcsiny -2∫ sin²A / cosA * cosA dA
= 2y²arcsiny -∫ (1 - cos2A) dA
= 2y²arcsiny -(A - sin2A / 2) + C
= 2y²arcsiny - A + sinAcosA + C
= 2y²arcsiny - arcsiny + y√(1 - y²) + C
= (2 * x² / 4 - 1)arcsin(x / 2) + (x / 2)√[1 - (x / 2)²] + C
= (1 / 2)(x² - 2)arcsin(x / 2) + (x / 4)√(4 - x²) + C
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1多音字“把”有哪些
- 2若x²+3x-(1/3)=0,则代数式(x-3)/3x²-6x÷[x+2-﹙5/x-2﹚]的值是、、、、
- 3有理数a在数轴上对应的点为A,试比较a -a a—3三数的大小.
- 4你是我最好的朋友,没有之一 英文翻译
- 5一个等腰三角形的内角比另一个内角的2被少30°,求此三角形内角的度数
- 6After the operation, he was still very sick. But the doctors are sure that he will put through
- 7已知三角形两条边长,求第三边长,一个90度,一个45度
- 8当m=____时,方程x/x-3-2=m/x-3有增根
- 9安字加偏旁并组词
- 10初三中考英语英语选择题几道求解释
热门考点