当前位置: > 已知:在梯形ABCD中,AD∥BC,CA平分∠DCE,AB⊥AC,E为BC的中点. 求证:DE、AC互相垂直平分....
题目
已知:在梯形ABCD中,AD∥BC,CA平分∠DCE,AB⊥AC,E为BC的中点.
求证:DE、AC互相垂直平分.

提问时间:2020-12-13

答案
证明:连接AE.
∵在直角三角形ABC中,E是BC的中点,
∴AE是Rt△ABC的中线,
∴AE=CE=BE,
∴∠EAC=∠ACE.
∵AD∥BC
∴∠ACE=∠ACD
∴∠EAC=∠ACD
∴AE∥CD
∴四边形AECD是平行四边形.
又AE=CE
所以平行四边形AECD是菱形,
所以DE、AC互相垂直平分.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.