当前位置: > 怎样解指数方程...
题目
怎样解指数方程
解方程9^(-x) - 2*3^(1-x) - 27 = 0
回答清楚的追加奖分!

提问时间:2020-12-13

答案
9^(-x) - 2*3^(1-x) - 27 = 0
(3*3)^(-x) - 2*(3^1)*3^(-x) - 27 = 0
3^(-x)*3^(-x) - 2*3*3^(-x) - 27 = 0
3^(-x)*3^(-x) - 6*3^(-x) - 27 = 0
(3^(-x))^2 - 6*3^(-x) - 27 = 0
(3^(-x)+3)(3^(-x)-9) = 0
3^(-x)+3=0,x无实数解
3^(-x)-9=0,3^(-x)=9=3^2,-x=2
x=-2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.