当前位置: > 函数y=1+(sinx+cosx)+(sinx+cosx)^2的最大值是...
题目
函数y=1+(sinx+cosx)+(sinx+cosx)^2的最大值是

提问时间:2020-12-13

答案
分析:令t=sinx+cosx=(2^0.5)sin(x+pi/4),pi=3.14159...于是t属于[-2^0.5,2^0.5],y(t)=1+t+t^2=(t+1/2)^2+3/4,对称轴为t=-1/2,则易得maxy(t)=y(2^0.5)=1+2^0.5+2=3+2^0.5,即y最大值为3+2^0.5
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.