当前位置: > 已知正三角形ABC的边长为a,在平面上求一点P使PA^2+PB^2+PC^2最小,并求出此最小值...
题目
已知正三角形ABC的边长为a,在平面上求一点P使PA^2+PB^2+PC^2最小,并求出此最小值

提问时间:2020-12-13

答案
设A、B、C三点的坐标分别为(0,0),(a,0),(a/2,√3a/2),另设P(x,y)是平面上任一点,则PA^2+PB^2+PC^2=(x^2+y^2)+[(x-a)^2+y^2]+[(x-a/2)^2+(y-√3a/2)^2]=3x^2+3y^2-3ax-√3ay+2a^2=3[(x-a/2)^2+(y-√3a/6)^2]+a...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.