当前位置: > 在正方形ABCD中,P,Q是AB,AD上的点,连接PQ,三角形QAP的周长等于正方形周长的一半,求角PCQ的度数?...
题目
在正方形ABCD中,P,Q是AB,AD上的点,连接PQ,三角形QAP的周长等于正方形周长的一半,求角PCQ的度数?

提问时间:2020-12-13

答案
延长AD到F,使DF=BP,连接CF,作CE⊥PQ于E.连接CQ,CP.因为DF=BP,CD=CB,∠CDQ=∠B=90°,所以△CBP≌△CDF,那么CF=CP.△APQ的周长为正方形一半,可知道PQ=BP+DQ=DQ+DF=QF,那么,CQ=CQ,CF=CB,所以△CPQ≌△CFQ.所以∠CQF=∠C...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.