当前位置: > 函数f(x)=x3-3x2+2在区间[-1,1]上的最小值是(  ) A.-2 B.0 C.2 D.4...
题目
函数f(x)=x3-3x2+2在区间[-1,1]上的最小值是(  )
A. -2
B. 0
C. 2
D. 4

提问时间:2020-12-13

答案
∵f(x)=x3-3x2+2
∴f′(x)=3x2-6x
令f′(x)=0,结合x∈[-1,1]得x=0
当x∈[-1,0)时,f′(x)>0,f(x)为增函数
当x∈(0,1]时,f′(x)<0,f(x)为减函数
又∵f(-1)=-2,f(1)=0
故当x=-1时函数f(x)取最小值-2
故选A
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.