当前位置: > 设A为三阶实对称矩阵,且矩阵E+A 2E+A 3E-A 都不可逆……...
题目
设A为三阶实对称矩阵,且矩阵E+A 2E+A 3E-A 都不可逆……
设A为三阶实对称矩阵,且矩阵E+A 2E+A 3E-A 都不可逆,则二次型x^TAx经正交变换x=Py化成的标准形是?3y1^2-y2^2-2y3^2 我算出来的是:-y1^2-2y2^2+3y3^2
我的做法是,因为都不可逆所以:|-E-A|=0 |-2E-A|=0 |3E-A|=0 所以:γ1=-1 γ2=-2 γ3=3
难道是说,标准形必须正的在前,负的在后?还是说这两个答案都对?

提问时间:2020-12-13

答案
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.