当前位置: > n为正整数,一个三角形的三边长分别为2n^2+2n+1,2n^2+2n,2n+1 ,判断此三角形是不是直角三角形,并说明理...
题目
n为正整数,一个三角形的三边长分别为2n^2+2n+1,2n^2+2n,2n+1 ,判断此三角形是不是直角三角形,并说明理

提问时间:2020-12-12

答案
因n为正整数,所所以2n^2+2n+1> 2n^2+2n> 2n+1
如果该三角形为直角三角形,则只能有:
(2n^2+2n)^2+( 2n+1)^2=(2n^2+2n+1)^2
右边=( 2n^2+2n+1)^2
=(2n^2+2n)^2+2(2n^2+2n)+1
=(2n^2+2n)^2+4n^2+4n+1
=(2n^2+2n)^2+(2n+1)^2
=右边
所以该三角形为直角三角形.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.