当前位置: > 黑板上写着1、2、3、…99、100共100个数,每次任意擦去2个数,再写上这2个数的和减1,经过若干次后,黑板上只剩下一个数,这个数是多少?...
题目
黑板上写着1、2、3、…99、100共100个数,每次任意擦去2个数,再写上这2个数的和减1,经过若干次后,黑板上只剩下一个数,这个数是多少?

提问时间:2020-12-12

答案
答案应该是4951
100个数要留下一个那就要擦掉99个数,即擦198下1+2+3+.+100=5050,因为擦掉1个数要减1,所以要减99.即5050-99=4951
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.