题目
用公式∫(0.π)xf(sinx)dx=π/2∫(0.π)f(sinx)dx计算:∫(0,π)(xsinx)/[1+(cosx)^2]dx
(0,π)中,0是下限,π是上限,答案是(π^2)/4,求详解
(0,π)中,0是下限,π是上限,答案是(π^2)/4,求详解
提问时间:2020-12-12
答案
∫[0,π] (x sinx)/(1 + cos²x) dx= ∫[0,π] (x sinx)/(2 - sin²x) dx,设f(x) = x/(2 - x²),则f(sinx) = sinx/(2 - sin²x)= ∫[0,π] x f(sinx) dx= (π/2)∫[0,π] f(sinx) dx= (π/2)∫[0,π...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点