当前位置: > 求lim[(arcsinx)/x]^[1/(x^2)]在x趋近于0...
题目
求lim[(arcsinx)/x]^[1/(x^2)]在x趋近于0

提问时间:2020-12-12

答案
原式=e^lim{ln[(arcsinx)/x]/(x^2)}
然后反复利用L'Hospital法则,可以化简到e^lim{1/[6√(1-x^2)-4xarcsinx]}=e^(1/6)
所以当x→0时,lim[(arcsinx)/x]^[1/(x^2)]=e^(1/6)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.