题目
定义:若数列{An}满足An+1=An2,则称数列{An}为 平方递推数列
定义:若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,且an+1=2an2+2 an,其中n为正整数.
(1)设bn=2an+1,证明:数列{bn}是“平方递推数列”,且数列{lgbn}为等比数列;
(2)设(1)中“平方递推数列”{bn}的前n项之积为Tn,
即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项及Tn关于n的表达式;
(3)记cn=log2an+1Tn,求数列{cn}的前n项之和Sn,并求使Sn>2008的n的最小值.
定义:若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,且an+1=2an2+2 an,其中n为正整数.
(1)设bn=2an+1,证明:数列{bn}是“平方递推数列”,且数列{lgbn}为等比数列;
(2)设(1)中“平方递推数列”{bn}的前n项之积为Tn,
即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项及Tn关于n的表达式;
(3)记cn=log2an+1Tn,求数列{cn}的前n项之和Sn,并求使Sn>2008的n的最小值.
提问时间:2020-12-11
答案
(1)bn+1=2a(n+1)+1=4an^2+4an+1=(2an+1)^2=bn^2,
lgb(n+1)=2lgbn,lgb(n+1)/lgbn=2,且lgb1=lg(2a1+1)=lg5
故数列{bn}是“平方递推数列”,且数列{lgbn}为等比数列
(2)由(1)得,lgbn=lg5*2^(n-1),bn=5^[2^(n-1)],an=(bn-1)/2={5^[2^(n-1)]-1)}/2
lgTn=lgb1+lgb2+.+lgbn=lg5+lg5*2+.+lg5*2^(n-1)=lg5*(2^n-1)
Tn=5^(2^n-1)
(3)cn=log(bn)Tn=lgTn/lgbn=(2^n-1)/2^(n-1)=2-1/2^(n-1)
Sn=c1+c2+.+cn=2n-[1-(1/2)^n]/(1-1/2)=2n-2+1/2^(n-1)
由Sn>2008且Sn为增函数,得S1004<2008,S1005>2008,故使Sn>2008的n的最小值为1005
lgb(n+1)=2lgbn,lgb(n+1)/lgbn=2,且lgb1=lg(2a1+1)=lg5
故数列{bn}是“平方递推数列”,且数列{lgbn}为等比数列
(2)由(1)得,lgbn=lg5*2^(n-1),bn=5^[2^(n-1)],an=(bn-1)/2={5^[2^(n-1)]-1)}/2
lgTn=lgb1+lgb2+.+lgbn=lg5+lg5*2+.+lg5*2^(n-1)=lg5*(2^n-1)
Tn=5^(2^n-1)
(3)cn=log(bn)Tn=lgTn/lgbn=(2^n-1)/2^(n-1)=2-1/2^(n-1)
Sn=c1+c2+.+cn=2n-[1-(1/2)^n]/(1-1/2)=2n-2+1/2^(n-1)
由Sn>2008且Sn为增函数,得S1004<2008,S1005>2008,故使Sn>2008的n的最小值为1005
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1I stared without breathing across the long room,into the dark eyes of the hunter,and he looked pleas
- 2读了乌镇游记这篇短文,你觉得乌镇有哪些特点
- 3地球周围大气层上部的()能吸收紫外线
- 4高一数学,三角与向量
- 51.7+五又二分之一+3.5+七又十分之三
- 6高山流水的故事是什么?有什么寓意?
- 7关于“运动和力”的物理计算题
- 8急:一圆经过A(4.2)B(-1.3),且在两坐标轴上的四个截距的和为2.求圆的方程
- 9当该极限n趋于无穷是 lim (ln(1+n)) / (1+n)
- 10在比例中,两个内项互为倒数,其中一个外项是6.5,另一个外项是().
热门考点