当前位置: > 为什么对于方阵:矩阵可逆矩阵行(列)向量线性无关?...
题目
为什么对于方阵:矩阵可逆矩阵行(列)向量线性无关?
一直搞不清楚,矩阵可逆=矩阵满秩=矩阵行向量线性无关=矩阵列向量线性无关
所以方阵行向量或列向量线性相关=方阵不可逆,怎么来解释的,记住是记住了,可是不理解.

提问时间:2020-12-11

答案
前提是方阵 否者一切免谈
矩阵可逆则说明行列式不为零 A is nonsingular (你可以去看逆矩阵的推到公式)
并且 |A^-1 * A| = 1 => |A^-1|*|A|=>|A|!=0 => A is nonsingular
如果矩阵行向量线性相关=》会有一行进行行操作后变成零 => 行列式为零 =》 A is nonsingular
同理列向量...
注意所有条件推到的结果都是 nonsingular 所以他们都是等价的
可逆矩阵是非常好的条件,解方程中意味着有精确的解,如果矩阵不是可逆的,说明我们的条件还不够
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.