当前位置: > 设n阶矩阵A满足A^2-2A+2i=0 证明矩阵A-3I可逆,并求(A-3i )^-1...
题目
设n阶矩阵A满足A^2-2A+2i=0 证明矩阵A-3I可逆,并求(A-3i )^-1

提问时间:2020-12-11

答案
两边同时减5i
得A^2-2A-3i=-5i
(a-3i)(a+i)=-5i
(-1/5(a+i))(a-3i)=i
所以a-3i的逆矩阵是-1/5(a+i)
因为有逆矩阵所以可逆
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.