当前位置: > 在梯形ABCD中,AB∥CD,AC、BD相交于点O,若AC=5,BD=12,中位线长为13/2,△AOB的面积为S1,△COD的面积为S2,则S1+S2=_....
题目
在梯形ABCD中,AB∥CD,AC、BD相交于点O,若AC=5,BD=12,中位线长为
13
2

提问时间:2020-12-11

答案
作BE∥AC,
∵AB∥CE,∴CE=AB,
∵梯形中位线为6.5,
∴AB+CD=13,

∴DE=CE+CD=AB+CD=13,
∵BE=AC=5,BD=12,由勾股定理的逆定理,
得△BDE为直角三角形,即∠EBD=∠COD=90°,
设S△EBD=S
则S2:S=DO2:DB2
S1:S=OB2:BD2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.