当前位置: > 设A为m×n矩阵,证明方程AX=Em有解的充分必要条件为r(A)=m...
题目
设A为m×n矩阵,证明方程AX=Em有解的充分必要条件为r(A)=m

提问时间:2020-12-11

答案
充分性:当r(A)=m时,则A是行满秩的,A多添任一列向量组成的增光矩阵还是行满秩的,即有r(A ei)=m,其中ei是单位阵的第i列,于是方程Ax=ei有解bi,令X=【b1 b2 ...bm】,则AX=E.
必要性:若AX=E有解,则m=r(Em)=r(AX)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.