当前位置: > 证明:矩阵方程AX=B有解r(A)=r[A|B],其中A为m*n矩阵B为m*p矩阵...
题目
证明:矩阵方程AX=B有解r(A)=r[A|B],其中A为m*n矩阵B为m*p矩阵
如题

提问时间:2020-12-11

答案
若方程AX = B有解,则B的各列向量均可由A的列向量线性表出 (X的对应列为组合系数).
于是[A|B]的列向量均可由A的列向量线性表出,得r([A|B]) ≤ r(A).
又显然r(A) ≤ r([A|B]),故r(A) = r([A|B]).
反之,若r(A) = r([A|B]).
对B的任意一个列向量b,考虑线性方程组Ax = b.
由r(A) ≤ r([A|b]) ≤ r([A|B]) = r(A),有r(A) = r([A|b]),故Ax = b有解.
以这些解为列向量依次排成矩阵X,可验证AX = B.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.