题目
1^3=1^2,
1^3+2^3=(1+2)^2,
1^3+2^3+3^3=(1+2+3)^2
1^3+2^3+3^3+4^3=(1+2+3+4)^2
试写出数列{an}的前n项公式,并用数学归纳法加以证明.
1^3+2^3=(1+2)^2,
1^3+2^3+3^3=(1+2+3)^2
1^3+2^3+3^3+4^3=(1+2+3+4)^2
试写出数列{an}的前n项公式,并用数学归纳法加以证明.
提问时间:2020-12-10
答案
(a1)^3+(a2)^3+(a3)^3+...+(an)^3
=(1+2+3+...+n)^2=[n^2(n+1)^2]/4
1'n=1,an=1^3=1^3=1
2'假设当n=k,k>1,k∈z也成立
ak=(a1)^3+(a2)^3+(a3)^3+...+(ak)^3
=(1+2+3+...+k)^2=[k^2(k+1)^2]/4
3'n=k+1,
a(k+1)=(a1)^3+(a2)^3+(a3)^3+...+(aK)^3+a(k+1)^3
=[k^2(k+1)^2]/4+a(k+1)^3
=[k^2(k+1)^2]/4+(k+1)^3
=[(k+1)^2(2k+2)^2]/4
∴假设成立
:(a1)^3+(a2)^3+(a3)^3+...+(an)^3
=(1+2+3+...+n)^2=[n^2(n+1)^2]/4
=(1+2+3+...+n)^2=[n^2(n+1)^2]/4
1'n=1,an=1^3=1^3=1
2'假设当n=k,k>1,k∈z也成立
ak=(a1)^3+(a2)^3+(a3)^3+...+(ak)^3
=(1+2+3+...+k)^2=[k^2(k+1)^2]/4
3'n=k+1,
a(k+1)=(a1)^3+(a2)^3+(a3)^3+...+(aK)^3+a(k+1)^3
=[k^2(k+1)^2]/4+a(k+1)^3
=[k^2(k+1)^2]/4+(k+1)^3
=[(k+1)^2(2k+2)^2]/4
∴假设成立
:(a1)^3+(a2)^3+(a3)^3+...+(an)^3
=(1+2+3+...+n)^2=[n^2(n+1)^2]/4
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1下面除法竖式中不同的字母分别表示不同的数字,请你把这些竖式写出来.
- 2一个底面直径是20cm的圆柱形木桶中装着水,水中放着一个底面直径为18cm,高20cm的铁质圆锥体,当圆锥体从桶中取出后,桶内的水将下降多少厘米?
- 3我国是一个什么的国度,最早的诗歌总集是什么,记录了西周初年到春秋中叶约500年间的诗.
- 4用英语怎么说:这就是我想去英国旅游的两个原因
- 5对于函数y=sinxcosx+cos2x,求最小正周期和函数的值域
- 672的约数有几个?
- 7英语 急..(20 13:0:28)
- 8写小兔子特点的作文
- 9何谓之知?先言而后当.凡人欲舍行为,皆以其知先规而后为之的意思.急
- 10How to learn English better?六条建议.需用英语回答,不用太长,一句话就行了