当前位置: > 设函数y=f(x)的定义域为R,当x1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y)成立.数列{an}满足a1=f(0),且f(an+1)=1/f(-2-an)(n∈N)....
题目
设函数y=f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y)成立.数列{an}满足a1=f(0),且f(an+1)=1/f(-2-an)(n∈N).
(1)求证函数f(x)在R上是单调递减函数;(2)求a2007的值;
(3)若不等式(1+1/a1)(1+1/a2)...(1+1/an)≥k根号下(2n+1)对一切n∈N均成立.

提问时间:2020-12-09

答案
(1)
令x=0,y=-11>0
∴f(0-1)=f(0)f(-1)
f(-1)(1-f(0))=0
∴f(0)=1
设x1(2n+1)*(2n+3) (作差即可得出)
所以√{[(2n+2)^2]/[(2n+1)*(2n+3)]}>1
所以f(x+1)/f(x)>1
f(x+1)>f(x)
即此函数递增,最小值为f(1)=2/√3=2√3/3
k
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.