当前位置: > 求下列函数的极值f(x,y)=3x^2y+y^3-3x^2-3y^2+2 拐点怎么求啊.....
题目
求下列函数的极值f(x,y)=3x^2y+y^3-3x^2-3y^2+2 拐点怎么求啊..

提问时间:2020-12-08

答案
f(x,y)=3x^2y+y^3-3x^2-3y^2+2,
下面求驻点坐标:
f'x=6xy-6x=0,①
f'y=3x^+3y^-6y=0,②
由①,x=0,或y=1.
把x=0代入②,y^-2y=0,y=0或2;
把y=1代入②,x^=1,x=土1.
f''xx=6y-6,f''xy=6x,f''yy=6y-6.
(1)x=y=0,A=f''xx(0,0)=-60,
∴f(x,y)在(0,0)处取极大值2;
剩下部分留给您练习.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.