题目
已知E为▱ABCD外的一点,∠AEC=∠BED=90°,求证:四边形ABCD是矩形.
提问时间:2020-12-08
答案
证明:连接EO,
∵四边形ABCD是平行四边形,
∴AO=CO,BO=DO,
在Rt△EBD中,
∵O为BD中点,
∴EO=
BD,
在Rt△AEC中,∵O为AC中点,
∴EO=
AC,
∴AC=BD,
又∵四边形ABCD是平行四边形,
∴平行四边形ABCD是矩形.
∵四边形ABCD是平行四边形,
∴AO=CO,BO=DO,
在Rt△EBD中,
∵O为BD中点,
∴EO=
1 |
2 |
在Rt△AEC中,∵O为AC中点,
∴EO=
1 |
2 |
∴AC=BD,
又∵四边形ABCD是平行四边形,
∴平行四边形ABCD是矩形.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点