题目
谁能帮我整理初中三年的几何证明依据,
提问时间:2020-12-08
答案
几何证明的说理依据
最常用、最直接、最简单的说理依据:
1.已知
2.公共角
3.公共边
4.同圆的半径相等
5.等边三角形的边长相等、三个角都相等
6.正方形的边长相等、四个角都相等
相交线:
7.同角的余角相等;
8.等角的余角相等;
9.同角的补角相等
10.对顶角相等
判定平行线的三个方法:
11.同位角相等,两直线平行
12.内错角相等,两直线平行
13.同旁内角互补,两直线平行
平行线的三个性质:
14.两直线平行,同位角相等
15.两直线平行,内错角相等
16.两直线平行,同旁内角互补
和平行线相关的几个推论:
17.垂直于同一条直线的两直线平行
18.平行于同一条直线的两直线平行
(平行线的传递性)
19.平行线间的距离处处相等
20.同底等高的三角形面积相等
可以用来说理的意义:
21.邻补角的意义
22.垂直的意义
23.角平分线的意义
24.中点的意义
最常用的两个代数性质:
25.等量代换
26.等式的性质
三角形的内角和及其推论:
27.三角形的内角和等于180°
28.直角三角形的两锐角互余
29.三角形的一个外角等于和它不相邻的两个内角的和
30.三角形的一个外角大于任何一个和它不相邻的内角
31.三角形的外角和等于360°
全等三角形的判定方法:
32.边角边(S.A.S)
33.角边角 (A.S.A)
34.角角边 (A.A.S)
35.边边边 (S.S.S)
36.直角三角形全等判定:斜边和一条直角边对应相等的直角三角形全等(H.L)
全等三角形的性质:
37.全等三角形的对应角相等
38.全等三角形的对应边相等
等腰三角形:
39.等腰三角形的两个底角相等(等边对等角)
40.等腰三角形的三线合一
41.等角对等边
42.等边三角形的每个内角等于60°
43.三个内角都相等的三角形是等边三角形
44.有一个内角等于60°的等腰三角形是等边三角形
直角三角形的性质:
45.直角三角形的两个锐角互余
46.直角三角形斜边上的中线等于斜边的一半
47.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半
48.在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°
线段垂直平分线的性质
49. 线段垂直平分线上的点到线段两端点的距离相等(证明线段相等)
50.到线段两个端点距离相等的点,在这条线段的垂直平分线上(可证明垂直)
角平分线的性质
51.角平分线上的点到角两边距离相等(证明线段相等)
52.在角的内部,到角两边距离相等的点在角的平分线上(证明角相等)
勾股定理
53. 直角三角形两直角边的平方和等于斜边的平方:
即:∵在RT⊿ABC中,∠C=90°(已知)
∴AC2+BC2=AB2(勾股定理)
勾股定理的逆定理
53.如果直角三角形的一条边的平方等于其它
两条边的平方和,那么这个三角形是直角三角形.
即:∵ AC2+BC2=AB2(已知)
∴∠C=90° (勾股定理的逆定理)
∴⊿ABC是直角三角形
多边形相关公式:
55. 多边形的一个顶点出发对角线条数:(n-3)条
56. 多边形对角线条数:
57. 多边形内角和公式:(n-2)﹒180°
58. 多边形外角和:360°
平行四边形:
59. 定义:两组对边分别平行的四边形是平行四边形
平行四边形的性质:
60. 平行四边形的对边相等
61. 平行四边形的对角相等
62. 平行四边形的两条对角线互相平分
63. 平行四边形是中心对称图形,对称中心是两条对角线的交点
性质推论:
64. 夹在平行线间的平行线段相等
(可证线段相等)
65. 平行线间的距离处处相等(可证高相等)
平行四边形的判定方法:
66. 两组对边分别平行的四边形是平行四边形(平行四边形的定义)
67. 两组对边分别相等的四边形是平行四边形
68. 一组对边平行且相等的四边形是平行四边形
69. 两组对角相等的分别相等的四边形是平行四边形
70. 对角线互相平分的四边形是平行四边形
特殊的平行四边形:
71. 矩形定义:有一个内角是直角的平行四边形叫矩形
72. 菱形定义:有一组邻边相等的平行四边形叫菱形
73. 正方形定义:有一组邻边相等且有一个内角是直角的平行四边形叫正方形
矩形性质:
74. 矩形的四个角都是直角
75. 矩形的两条对角线相等
菱形性质:
76. 菱形的四条边都相等
77. 菱形的对角线互相垂直,且每一条对角线平分一组对角
正方形性质:
78. 正方形的四个角都是直角,四条边都相等
79. 正方形的两条对角线相等,且互相垂直,每条对角线平分一组对角
矩形的判定:
80. 有三个内角是直角的四边形是矩形
81. 对角线相等的平行四边形是矩形
菱形的判定:
82. 四条边都相等的四边形是菱形
83. 对角线互相垂直的平行四边形是菱形
正方形的判定:
84. 有一组邻边相等的矩形是正方形
85. 有一个内角是直角的菱形是正方形
梯形:
86. 定义:一组对边平行且另一组对边不平行的四边形角梯形
等腰梯形性质:
87. 等腰梯形在同一底上的两个内角相等
88. 等腰梯形的两条对角线相等
等腰梯形的判定:
89. 在同一底上的两个内角相等的梯形是等腰梯形
90. 对角线相等的梯形是等腰梯形
三角形、梯形中位线定理:
91. 三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半
92. 梯形中位线定理:梯形的中位线平行于两底,且等于两底和
的一半
最常用、最直接、最简单的说理依据:
1.已知
2.公共角
3.公共边
4.同圆的半径相等
5.等边三角形的边长相等、三个角都相等
6.正方形的边长相等、四个角都相等
相交线:
7.同角的余角相等;
8.等角的余角相等;
9.同角的补角相等
10.对顶角相等
判定平行线的三个方法:
11.同位角相等,两直线平行
12.内错角相等,两直线平行
13.同旁内角互补,两直线平行
平行线的三个性质:
14.两直线平行,同位角相等
15.两直线平行,内错角相等
16.两直线平行,同旁内角互补
和平行线相关的几个推论:
17.垂直于同一条直线的两直线平行
18.平行于同一条直线的两直线平行
(平行线的传递性)
19.平行线间的距离处处相等
20.同底等高的三角形面积相等
可以用来说理的意义:
21.邻补角的意义
22.垂直的意义
23.角平分线的意义
24.中点的意义
最常用的两个代数性质:
25.等量代换
26.等式的性质
三角形的内角和及其推论:
27.三角形的内角和等于180°
28.直角三角形的两锐角互余
29.三角形的一个外角等于和它不相邻的两个内角的和
30.三角形的一个外角大于任何一个和它不相邻的内角
31.三角形的外角和等于360°
全等三角形的判定方法:
32.边角边(S.A.S)
33.角边角 (A.S.A)
34.角角边 (A.A.S)
35.边边边 (S.S.S)
36.直角三角形全等判定:斜边和一条直角边对应相等的直角三角形全等(H.L)
全等三角形的性质:
37.全等三角形的对应角相等
38.全等三角形的对应边相等
等腰三角形:
39.等腰三角形的两个底角相等(等边对等角)
40.等腰三角形的三线合一
41.等角对等边
42.等边三角形的每个内角等于60°
43.三个内角都相等的三角形是等边三角形
44.有一个内角等于60°的等腰三角形是等边三角形
直角三角形的性质:
45.直角三角形的两个锐角互余
46.直角三角形斜边上的中线等于斜边的一半
47.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半
48.在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°
线段垂直平分线的性质
49. 线段垂直平分线上的点到线段两端点的距离相等(证明线段相等)
50.到线段两个端点距离相等的点,在这条线段的垂直平分线上(可证明垂直)
角平分线的性质
51.角平分线上的点到角两边距离相等(证明线段相等)
52.在角的内部,到角两边距离相等的点在角的平分线上(证明角相等)
勾股定理
53. 直角三角形两直角边的平方和等于斜边的平方:
即:∵在RT⊿ABC中,∠C=90°(已知)
∴AC2+BC2=AB2(勾股定理)
勾股定理的逆定理
53.如果直角三角形的一条边的平方等于其它
两条边的平方和,那么这个三角形是直角三角形.
即:∵ AC2+BC2=AB2(已知)
∴∠C=90° (勾股定理的逆定理)
∴⊿ABC是直角三角形
多边形相关公式:
55. 多边形的一个顶点出发对角线条数:(n-3)条
56. 多边形对角线条数:
57. 多边形内角和公式:(n-2)﹒180°
58. 多边形外角和:360°
平行四边形:
59. 定义:两组对边分别平行的四边形是平行四边形
平行四边形的性质:
60. 平行四边形的对边相等
61. 平行四边形的对角相等
62. 平行四边形的两条对角线互相平分
63. 平行四边形是中心对称图形,对称中心是两条对角线的交点
性质推论:
64. 夹在平行线间的平行线段相等
(可证线段相等)
65. 平行线间的距离处处相等(可证高相等)
平行四边形的判定方法:
66. 两组对边分别平行的四边形是平行四边形(平行四边形的定义)
67. 两组对边分别相等的四边形是平行四边形
68. 一组对边平行且相等的四边形是平行四边形
69. 两组对角相等的分别相等的四边形是平行四边形
70. 对角线互相平分的四边形是平行四边形
特殊的平行四边形:
71. 矩形定义:有一个内角是直角的平行四边形叫矩形
72. 菱形定义:有一组邻边相等的平行四边形叫菱形
73. 正方形定义:有一组邻边相等且有一个内角是直角的平行四边形叫正方形
矩形性质:
74. 矩形的四个角都是直角
75. 矩形的两条对角线相等
菱形性质:
76. 菱形的四条边都相等
77. 菱形的对角线互相垂直,且每一条对角线平分一组对角
正方形性质:
78. 正方形的四个角都是直角,四条边都相等
79. 正方形的两条对角线相等,且互相垂直,每条对角线平分一组对角
矩形的判定:
80. 有三个内角是直角的四边形是矩形
81. 对角线相等的平行四边形是矩形
菱形的判定:
82. 四条边都相等的四边形是菱形
83. 对角线互相垂直的平行四边形是菱形
正方形的判定:
84. 有一组邻边相等的矩形是正方形
85. 有一个内角是直角的菱形是正方形
梯形:
86. 定义:一组对边平行且另一组对边不平行的四边形角梯形
等腰梯形性质:
87. 等腰梯形在同一底上的两个内角相等
88. 等腰梯形的两条对角线相等
等腰梯形的判定:
89. 在同一底上的两个内角相等的梯形是等腰梯形
90. 对角线相等的梯形是等腰梯形
三角形、梯形中位线定理:
91. 三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半
92. 梯形中位线定理:梯形的中位线平行于两底,且等于两底和
的一半
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1晚安和安的区别是什么
- 2There are two oranges trees哪里错了?=
- 3一位母亲与家长会阅读答案
- 4(1/10)的-1次方+(1/3)的-2次方+(1/2)的0次方=?(1又7/9)的11次方·(9/16)的11次方·(-1)的11次方=?
- 5I will help you改为否定句
- 6一根铁丝长为6.28分米,用它分别围成一个正方形和一个圆形,这个圆形的面积是最大的,问大多少平方分米?
- 7小李在解方程5a一x=13(x为未知数)时,误将一x看作+X,解得方程的解x=一2,则原方程的解为多少?
- 8Please keep us _.A.inform B.informing C.to inform D.informed
- 9如何用钳形电流表测量单相电线的电流
- 10弃燕雀之小志 慕鸿鹄而高翔这句诗什么意思?如题
热门考点
- 1下列哪种是生物由水生演化到陆生过程中形成防止体内水分散失的结构?( ) A.鸟类发展出羽毛 B.陆生植物出现气孔 C.昆虫体表出现较硬的角质层 D.陆生动物的呼吸器官演变成肺
- 29:40时针与分针夹角是多少度
- 3100马力拖拉机旋耕机2.3米耕地速度多少千米每小时
- 4不受约束的意思用漫组个词
- 5英语作文 我的爱好(我喜欢打羽毛球,看电视,玩,听音乐)40个单词
- 6长32厘米的长方形铁皮四角各剪去边长4厘米的正方形做无盖铁盒已知盒的容积是1920毫升求这个铁皮的表面积
- 7函数f(x)=(x-3)ex的单调递减区间是( ) A.(-∞,2) B.(0,3) C.(1,4) D.(2,+∞)
- 8四年级2班有50人,上体育课时老师要求站成一排,相邻两人之间的距离是50厘米,请问从第一个人到最后一个人
- 9人离不开水,成年人每天体内的水分靠喝水.来自食物中的水和来自内氧化时释放的水.这三种来源得水比是47:39:14一个成年人每天大约需要2分之5千克水,每天要喝多少千克的水才能满足需要?(请把过程写下来
- 10写得很好的句子