当前位置: > 求二元函数混合微分 z=f(x²-y²,e的xy次方) 求∂²z/∂x∂y...
题目
求二元函数混合微分 z=f(x²-y²,e的xy次方) 求∂²z/∂x∂y

提问时间:2020-12-07

答案
已知二元函数 z=f[x²-y²,e^(xy)] 求∂²z/∂x∂y
设z=f(u,v),u=x²-y²,v=e^(xy);
∂z/∂x=(∂z/∂u)(∂u/∂x)+(∂z/∂v)(∂v/∂x)=(∂z/∂u)(2x)+(∂z/∂v)[ye^(xy)]
∂²z/∂x∂y=2x(∂²z/∂u²)(∂u/∂y)+ye^(xy)(∂²z/∂v²)(∂v/∂y)+(∂z/∂v)[e^(xy)+xye^(xy)]
=-4xy(∂²z/∂u²)+ye^(xy)(∂²z/∂v²)[xe^(xy)]+(∂z/∂v)[e^(xy)+xye^(xy)]
=-4xy(∂²z/∂u²)+xye^(2xy)(∂²z/∂v²)+[e^(xy)+xye^(xy)](∂z/∂v).
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.