当前位置: > 设0<a<b,证明不等式 (2a)/(a^2+b^2)<(lnb-lna)/(b-a)<1/(ab)^0.5...
题目
设0<a<b,证明不等式 (2a)/(a^2+b^2)<(lnb-lna)/(b-a)<1/(ab)^0.5

提问时间:2020-12-07

答案
设f(x)=ln x,则f(x)在[a,b]上连续,在(a,b)上可导,
则至少存在一点c∈(a,b)使得f'(c)=[f(b)-f(a)]/(b-a)
f'(x)=(ln x)'=1/x,左边=(2a)/(a^2+b^2)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.