当前位置: > 如一个三角形边长a,b,c皆为整数,并且a+bc+b+ca=4,那么三角形周长为...
题目
如一个三角形边长a,b,c皆为整数,并且a+bc+b+ca=4,那么三角形周长为
如一个三角形边长a,b,c皆为整数,并且a+bc+b+ca=4,那么三角形周长=?

提问时间:2020-12-07

答案
a+bc+b+ca
=a+b+c(a+b)
=(a+b)(1+c)=4
a,b,c皆为整数
所以a+b和1+c是整数
4=1*4=2*2
因为边长大于0
所以a,b,c都是正整数
所以a+b>=2
所以a+b=2或a+b=4
若a+b=4,则1+c=1
c=0,不是正数,不成立
若a+b=2,则1+c=2
两个正整数相加等于2
则a=1,b=1,c=1
周长=a+b+c=3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.