题目
已知点p(4,4),圆 C(x-m)^2+y^2=5(m<3)与椭圆Ex^2/a^2 + y^2/b^2=1(a>b>0)有一个公共点A(1,3)
F1,F2分别是椭圆的左右焦点,直线PF1与圆C相切,1)求m的值与椭圆E的方程,2)设Q是椭圆E上的一个动点,求向量AP*向量AQ的取值范围
F1,F2分别是椭圆的左右焦点,直线PF1与圆C相切,1)求m的值与椭圆E的方程,2)设Q是椭圆E上的一个动点,求向量AP*向量AQ的取值范围
提问时间:2020-12-07
答案
(1)由于:A(3,1)在圆c:(x-m)^2+y^2=5
和椭圆E:x^2/a^2+y^2/b^2=1上
则有:(3-m)^2+1^2=5 -----(1)
9/a^2+1/b^2=1 -----(2)
解(1)可得:m=5或1
由于:m0;则由上式得:c=4
则有:a^2-b^2=c^2=16 ------(3)
联立(1)(3)可得:a^2=18,b^2=2
则:椭圆E的方程:x^2/18+y^2/2=1
(2)
设Q(x,y);由于:P(4,4)A(3,1)
则:向量AP=(1,3);向量AQ=(x-3,y-1)
则:向量AP*向量AQ
=1*(x-3)+3*(y-1)
=x-3+3y-3
=x+3y-6
由于:Q(x,y)为椭圆E上的一个动点
且椭圆E:x^2/18+y^2/2=1
则利用椭圆的参数方程
则令x=3√2cosa,y=√2sina(a属于R)
则:向量AP*向量AQ=x+3y-6
=3√2cosa+3√2sina-6
=3√2(sina+cosa)-6
=3√2(√2)[(√2/2)sina+(√2/2)cosa]-6
=6[sinacos45+sin45cosa]-6
=6sin(a+45)-6
由于:a属于R,则:(a+45)属于R
则:sin(a+45)属于[-1,1]
则:6sin(a+45)-6属于[-12,0]
即:向量AP*向量AQ的取值范围:[-12,0]
和椭圆E:x^2/a^2+y^2/b^2=1上
则有:(3-m)^2+1^2=5 -----(1)
9/a^2+1/b^2=1 -----(2)
解(1)可得:m=5或1
由于:m0;则由上式得:c=4
则有:a^2-b^2=c^2=16 ------(3)
联立(1)(3)可得:a^2=18,b^2=2
则:椭圆E的方程:x^2/18+y^2/2=1
(2)
设Q(x,y);由于:P(4,4)A(3,1)
则:向量AP=(1,3);向量AQ=(x-3,y-1)
则:向量AP*向量AQ
=1*(x-3)+3*(y-1)
=x-3+3y-3
=x+3y-6
由于:Q(x,y)为椭圆E上的一个动点
且椭圆E:x^2/18+y^2/2=1
则利用椭圆的参数方程
则令x=3√2cosa,y=√2sina(a属于R)
则:向量AP*向量AQ=x+3y-6
=3√2cosa+3√2sina-6
=3√2(sina+cosa)-6
=3√2(√2)[(√2/2)sina+(√2/2)cosa]-6
=6[sinacos45+sin45cosa]-6
=6sin(a+45)-6
由于:a属于R,则:(a+45)属于R
则:sin(a+45)属于[-1,1]
则:6sin(a+45)-6属于[-12,0]
即:向量AP*向量AQ的取值范围:[-12,0]
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1等位基因交叉互换后配子的种类
- 2党和政府对于不公平的社会现象应该采取哪些措施
- 3That is a yellow ring.对a yellow rig提问
- 4直立的容器内部有被隔板隔开的A,B两部分气体,A的密度小于B的密度,抽取隔板,加热气体,使两部分气体均匀混合,设在此过程气体吸热Q,气体内能增量为E,则()
- 5同位角相等,两直线平行是定理还是公理?
- 6已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左焦点及点A(0,b),原点O到直线FA的距离为根号2/2b
- 71.电流通过电熨斗将()能转换为()能
- 8宾语从句中怎么时候用that 什么时候用where what who等
- 9蛋白质的盐析原理是什么
- 10There is some water in this kettle请帮我分解