题目
正方形ABCD所在平面与平面四边形ABEF所在平面相互垂直,△ABE是等腰直角三角形,AB=AE,FA=FE,∠AEF=45°,
1、求证:EF⊥平面BCE
2、设线段CD、AE的中点分别为P、M,求证PM‖平面BCE
3、求二面角F-BD-A的大小.
请写清第三小题的步骤,谢谢
1、求证:EF⊥平面BCE
2、设线段CD、AE的中点分别为P、M,求证PM‖平面BCE
3、求二面角F-BD-A的大小.
请写清第三小题的步骤,谢谢
提问时间:2020-12-06
答案
1.因为△ABE是等腰直角三角形,AB=AE,所以∠AEB=45°因为∠AEF=45°,所以FE⊥EB因为正方形ABCD所在平面与平面四边形ABEF所在平面相互垂直,△ABE是等腰直角三角形,可以求证出BC⊥面ABEF,即EF⊥BC所以EF⊥平面BCE2.取EB...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点