当前位置: > 求极限:lim(3^x+4^x+5^x)^1/x...
题目
求极限:lim(3^x+4^x+5^x)^1/x
当x趋近无穷大的时候的极限.

提问时间:2020-12-06

答案
若x趋近于+∞
lim(3^x+4^x+5^x)^1/x=lime^[ln(3^x+4^x+5^x)/x]
=lime^[ln5^x*(3/5^x+4/5^x+1)/x]
=lime^[(ln5^x)/x+ln(3/5^x+4/5^x+1)/x]
=e^[ln5+0/x]=e^(ln5)=5
若x趋近于-∞
原式==lime^[ln3^x*(5/3^x+4/3^x+1)/x]
=lime^[(ln3^x)/x+ln(5/3^x+4/3^x+1)/x]
=e^ln3
=3
所以若x趋近于∞时极限不存在
--------------------------------------
楼上的答案中
5^x
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.