题目
已知抛物线y=x2-2x-3,将y=x2-2x-3用配方法化为y=a(x-h)2+k的形式,并指出对称轴、顶点坐标及图象与x轴、y轴的交点坐标.
提问时间:2020-12-06
答案
y=x2-2x-3=x2-2x+1-1-3=(x-1)2-4,
对称轴是x=1,顶点坐标是(1,-4),
当x=0时,y=-3,所以y轴的交点坐标为(0,-3),
当y=0时,x=3或x=-1即与x轴的交点坐标为(3,0),(-1,0).
对称轴是x=1,顶点坐标是(1,-4),
当x=0时,y=-3,所以y轴的交点坐标为(0,-3),
当y=0时,x=3或x=-1即与x轴的交点坐标为(3,0),(-1,0).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点