当前位置: > 求解一矩阵证明题.....
题目
求解一矩阵证明题..
证明不存在三阶复矩阵A,使得AA=B,其中B为三阶矩阵,方阵的右上方三个元素不为0,且其他元素为0.即i>=j时b(ij)=0,i

提问时间:2020-12-06

答案
反证法,若存在A,有A^2=B.注意到B^2≠0,但B^3=0.从而有A^4≠0,但A^6=0.但这是不可能的.因为A^6为0矩阵说明X^6是A的零化多项式,又由于A是3阶的,故X^3也必定是A的零化多项式,也即A^3=0,从而A^4一定为0,矛盾.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.