当前位置: > 设函数f(x)=ax2+bx+c (a≠0)中,a,b,c均为整数,且f(0),f(1)均为奇数.求证:f(x)=0无整数根....
题目
设函数f(x)=ax2+bx+c (a≠0)中,a,b,c均为整数,且f(0),f(1)均为奇数.求证:f(x)=0无整数根.

提问时间:2020-12-06

答案
证明:f(0)=c为奇数f(1)=a+b+c为奇数,则a+b为偶数所以a,b同奇偶假设整数根t,所以f(t)=0 即at2+bt+c=0若a,b同为偶数,则at2+bt为偶数,所以at2+bt+c为奇数可得at2+bt+c≠0与at2+bt+c=0矛盾若a,b同为奇数,...
先通过条件得到a,b同奇偶,然后分别讨论若a,b同为偶数与同为奇数两种情形,然后根据数值的奇偶进行判定方程有无整数根.

函数与方程的综合运用.

本题主要考查了函数与方程的综合运用,以及分类讨论的数学思想,属于基础题.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.