当前位置: > 已知:平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E,F,G分别是OC,OD,AB的中点.求证:(1)BE⊥AC;(2)EG=EF....
题目
已知:平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E,F,G分别是OC,OD,AB的中点.求证:(1)BE⊥AC;(2)EG=EF.
作业帮

提问时间:2020-12-06

答案
证明:(1)∵四边形ABCD是平行四边形,
∴AD=BC,BD=2BO.
由已知BD=2AD,
∴BO=BC.
又E是OC中点,
∴BE⊥AC.
(2)由(1)BE⊥AC,又G是AB中点,
∴EG是Rt△ABE斜边上的中线.
∴EG=
1
2
AB.
又∵EF是△OCD的中位线,
∴EF=
1
2
CD.
又AB=CD,
∴EG=EF.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.