当前位置: > 圆x^2+y^2-4axcosθ-4aysinθ+3a^2=0(a≠0,θ为参数)的圆心的轨迹方程是...
题目
圆x^2+y^2-4axcosθ-4aysinθ+3a^2=0(a≠0,θ为参数)的圆心的轨迹方程是

提问时间:2020-12-05

答案
原方程可化为(x-2axcosθ)^2+(y-2asinθ)^2=4a^2cos^2θ+4a^2sin^2θ(配方)
即(x-2axcosθ)^2+(y-2asinθ)^2=4a^2(cos^2θ+sin^2θ)-3a^2=a^2
圆心为(2axcosθ,2asinθ)
所以(2axcosθ)^2+(2asinθ)^2=4a^2
所以圆心方程为x^2+y^2=4a^2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.