题目
已知数列{an}的首项a1=a(a是常数且a≠-1),an=2a(n-1)+1(n∈N,n≥2).
(1){an}是否可能是等差数列,若可能,求出{an}的通向公式;若不可能,说明理由;
(2)设bn=an+c(c∈N,c是常数),若{bn}是等比数列,求实数c的值,并求出{an}的通项公式.
(1){an}是否可能是等差数列,若可能,求出{an}的通向公式;若不可能,说明理由;
(2)设bn=an+c(c∈N,c是常数),若{bn}是等比数列,求实数c的值,并求出{an}的通项公式.
提问时间:2020-12-05
答案
An=2A(n-1)+1
假设可能是等差数列,那么设An=A(n-1)+d
代入有:A(n-1)+d=2A(n-1)+1
A(n-1)=d-1 这样当n>=2时,An成了常数列了.
d只能为0,d为0时,A2=A1=-1
而题目中说了,首项A1=A(A是常数且A不等于-1),
所以假设不成立.即{An}不可能是等差数列.
还可以直接求出来An的表达式,An=2A(n-1)+1
设An+a=2〔A(n-1)+a〕
解得:a=1
所以{An+1}为等比数列,q=2 首项为A1+1=A+1
所以An+1=(A+1)*2^(n-1)
所以An=(A+1)*2^(n-1)-1
当n=1时候,也成立,所以
An=(A+1)*2^(n-1)-1
所以An-An-1=(A+1)*2^(n-1)-1-(A+1)*2^(n-2)-1
=(A+1)*2^(n-2)
显然不为常数,所以不是等差数列.
2 Bn=An+c=(A+1)*2^(n-1)-1+C
若{Bn}是等比数列,有Bn+1=Bn*q
即(A+1)*2^n-1+C=q(A+1)*2^(n-1)-q+qC
(2-q)*(A+1)*2^(n-1)-1+c=-q+qC
显然整理后的(2-q)*(A+1)*2^(n-1)项的系数(2-q)*(A+1)=0
即q=2
再代入:-1+c=-2+2c
所以c=1
所以Bn=(A+1)*2^(n-1)
假设可能是等差数列,那么设An=A(n-1)+d
代入有:A(n-1)+d=2A(n-1)+1
A(n-1)=d-1 这样当n>=2时,An成了常数列了.
d只能为0,d为0时,A2=A1=-1
而题目中说了,首项A1=A(A是常数且A不等于-1),
所以假设不成立.即{An}不可能是等差数列.
还可以直接求出来An的表达式,An=2A(n-1)+1
设An+a=2〔A(n-1)+a〕
解得:a=1
所以{An+1}为等比数列,q=2 首项为A1+1=A+1
所以An+1=(A+1)*2^(n-1)
所以An=(A+1)*2^(n-1)-1
当n=1时候,也成立,所以
An=(A+1)*2^(n-1)-1
所以An-An-1=(A+1)*2^(n-1)-1-(A+1)*2^(n-2)-1
=(A+1)*2^(n-2)
显然不为常数,所以不是等差数列.
2 Bn=An+c=(A+1)*2^(n-1)-1+C
若{Bn}是等比数列,有Bn+1=Bn*q
即(A+1)*2^n-1+C=q(A+1)*2^(n-1)-q+qC
(2-q)*(A+1)*2^(n-1)-1+c=-q+qC
显然整理后的(2-q)*(A+1)*2^(n-1)项的系数(2-q)*(A+1)=0
即q=2
再代入:-1+c=-2+2c
所以c=1
所以Bn=(A+1)*2^(n-1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1“薄”字有两种读音bao bo.薄雾该读哪一种哪一种,该怎样区分?怎样向学生说明?
- 2设4×4矩阵A .B A的行列式为4,B的行列式为1,求A+B的行列式
- 3用符号修改病句
- 4为什么 F=kQ1Q2/R^2=mg 这是库伦定理 怎么等于mg
- 5利用漂浮条件、量桶和按入法测密度小于水的固体的密度
- 6She looked at me with the wisdom and pity that could burn into a soul.
- 7She pretended_____me when I passed by.
- 8求一个数正约数的公式?
- 9he went all out for a job that would not disappear at the first signs of a depression翻译~
- 10上面一个雨下面一个下念什么?