当前位置: > 如图,在角AOB的两边OA,OB上分别取OM=ON,OD=OE,DN和EM相交于点C,求证:点C在角AOB的平分线上....
题目
如图,在角AOB的两边OA,OB上分别取OM=ON,OD=OE,DN和EM相交于点C,求证:点C在角AOB的平分线上.

提问时间:2020-12-05

答案
OM=ON,OD=OE,角AOB=角AOB,得出三角形OND全等于三角形OME,从而有角ODN=角OEM;
OM=ON,OD=OE,得出DM=NE;又有角NCE=角MCD,角ODN=角OEM,从而三角形CDM全等于CEN,从而有CD=CE;
连接CO,有CO=CO,OE=OD,由上述结论CD=CE,故三角形COE全等于三角形COD,从而角COE=角COD,即C在角AOB的平分线上.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.