题目
计算∫1/(sinx+sin2x)dx,高手请进!
计算∫1/(sinx+sin2x)dx
最好多种有不同的解法
计算∫1/(sinx+sin2x)dx
最好多种有不同的解法
提问时间:2020-12-05
答案
一楼的答案是错的吧,积分积错了
此题我只能想到2种解法了:
1.设u=tan(1/2*x),所以sinx=2u/(1+u^2),cosx=(1-u^2)/(1+u^2),dx=2/(1+u^2)du
代入化简得:
原式=∫1/u(3-u^2)du
=∫1/3*1/udu+∫2/3*1/(3-u^2)du
=-2/3*lnlu^2-3l+1/3*lnlul+C
=-2/3*lnltan(1/2*x)^2-3l+1/3*lnltan(1/2*x)l+C
2.分子分母同乘sinx,
所以原式=∫sinx/[(sinx+sin2x)sinx]dx
=-∫1/[(1-cosx^2)*(1+2cosx)]d(cosx)
设t=cosx
所以原式=-∫1/[(1-t^2)*(1+2t)]d(t)
=∫4/3*1/(1+2t)dt+∫1/6*1/(1-t)dt+∫(-1/2)*1/(1+t)dt
=2/3*lnl1+2tl-1/6*lnl1-tl-1/2lnl1+tl+C
=2/3*lnl1+2cosxl-1/6*lnl1-cosxl-1/2lnl1+cosxl+C
此题我只能想到2种解法了:
1.设u=tan(1/2*x),所以sinx=2u/(1+u^2),cosx=(1-u^2)/(1+u^2),dx=2/(1+u^2)du
代入化简得:
原式=∫1/u(3-u^2)du
=∫1/3*1/udu+∫2/3*1/(3-u^2)du
=-2/3*lnlu^2-3l+1/3*lnlul+C
=-2/3*lnltan(1/2*x)^2-3l+1/3*lnltan(1/2*x)l+C
2.分子分母同乘sinx,
所以原式=∫sinx/[(sinx+sin2x)sinx]dx
=-∫1/[(1-cosx^2)*(1+2cosx)]d(cosx)
设t=cosx
所以原式=-∫1/[(1-t^2)*(1+2t)]d(t)
=∫4/3*1/(1+2t)dt+∫1/6*1/(1-t)dt+∫(-1/2)*1/(1+t)dt
=2/3*lnl1+2tl-1/6*lnl1-tl-1/2lnl1+tl+C
=2/3*lnl1+2cosxl-1/6*lnl1-cosxl-1/2lnl1+cosxl+C
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1250ml的液体是多少克?
- 2各种外动力地质作用成岩的颗粒大小分布
- 3关于x的一元二次方程ax^2 + bx + c = 0(a不等于0),若a+b+c=0,则方程必有两个不等实数根,为什么?
- 4一座抛物线型拱桥如图所示,桥下水面宽度4m时,当水面下降1m后.水面宽度是
- 5Is he not understand or duplicity.
- 6有一个数,它的正平方根比它的倒数的正平方根的2倍多7/2,求这个数
- 7(四分之三减八分之五)除以(二分之一减三分之一)咋写脱式计算啊!
- 8读了这本书,我才知道,太阳表面的温度也不过6000摄氏度以上呢.
- 9任意写一个三位数,若它能被3整除,则以该数除以3的商作为新数,若不能,则以这个数各位商的数字之和的平方作为新数.列如:
- 10某设备有2台三相异步电动机,其控制要求为(如下A B C D E):试设计其主电路和控制电路
热门考点