当前位置: > 证明 四个连续奇数的乘积减去一,必能被八整除...
题目
证明 四个连续奇数的乘积减去一,必能被八整除

提问时间:2020-12-05

答案
设这四个奇数为 2n-3,2n-1,2n+1,2n+3
则他们的积减1为
(2n-3)(2n-1)(2n+1)(2n+3)-1
=(2n-3)(2n+3)(2n-1)(2n+1)-1
=(4n^2-9)(4n^2-1)-1
=16n^4-40n^2+8
=8(2n^4-5n^2+1)
所以四个连续奇数的乘积减去一,必能被八整除
加油啊!好好努力!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.