当前位置: > 利用二重积分求下列各曲面所围成的立体体积...
题目
利用二重积分求下列各曲面所围成的立体体积
由平面z=0,圆拄面x^2+y^2=ax,和旋转抛物面x^2+y^2=z所围成的立体
这题目我用极坐标算出来是(3a^4∏)/64 但答案却是(3a^4∏)/32
所以想在这里请教大家,让大家帮忙列个式子 ,然后再告诉我最后的答案 是我对还是答案错了 谢谢
我的式子是 ∫(0→∏/2)dθ∫(0→acosθ) (r^2cos^2θ+ r^2sin^2θ)•r dr算出来是(3a^4∏)/64
拜托大家了 答的好有加分哦.谢谢

提问时间:2020-12-05

答案
由x^2+y^2≤ax得θ的范围是[-π/2,π/2],不是[0,π/2]
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.