当前位置: > 记函数y=1-2a-2acosx-2sin2x的最小值为f(a). (1)求f(a)的表达式; (2)若f(a)=1/2,求y=1-2a-2acosx-2sin2x的最大值....
题目
记函数y=1-2a-2acosx-2sin2x的最小值为f(a).
(1)求f(a)的表达式;
(2)若f(a)=
1
2
,求y=1-2a-2acosx-2sin2x的最大值.

提问时间:2020-12-05

答案
(1)y=1-2a-2acosx-2sin2x=1-2a-2acosx-2(1-cos2x)
=2(cosx−
a
2
)
2
a2
2
−2a−1
其中cosx∈[-1,1](2分)
a
2
≤−1
即a≤-2时,(令t=cosx,函数的对称轴t=
a
2
).y在t∈[-1,1]单调递增,t=cosx=-1,ymin=1 (1分)
−1<
a
2
≤1
即-2<a≤2时,cosx=
a
2
ymin=−
a2
2
−2a−1
(1分)
a
2
>1
即a>2时,y在[-1,1]单调递减,cosx=1,ymin=-4a+1 (1分)
f(a)=
1a≤−2
a2
2
−2a−1
−2<a≤2
−4a+1a>2
(1分)
(2)当-2<a≤2时,f(a)=−
a2
2
−2a−1=
1
2
⇒a=-1或a=-3(舍)   (2分)
当a>2时,f(a)=−4a+1=
1
2
⇒a=
1
8
(舍)∴a=-1(1分)
此时,y=2cos2x+2cosx+1=2(cosx+
1
2
)2+
1
2
,其中cosx∈[-1,1](2分)
当cosx=1时,ymax=5(1分)
(1)利用同角三角函数的基本关系式,化简函数的表达式,配方为2(cosx−
a
2
)
2
a2
2
−2a−1
,利用三角函数的有界性,求f(a)的表达式;
(2)通过f(a)=
1
2
,求出a的值,然后直接求y=1-2a-2acosx-2sin2x的最大值.

三角函数的最值.

本题是中档题,考查三角函数的化简求值,最小值的求法,考查计算能力,转化思想,函数与方程的思想的应用.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.