当前位置: > 研究矩阵的相似对角化的意义...
题目
研究矩阵的相似对角化的意义

提问时间:2020-12-04

答案
理论上看,意义是明显的.相似是一种等价关系,对角化相当于对一类矩阵在相似意义下给出了一种简单的等价形式,这对理论分析是方便的.相似的矩阵拥有很多相同的性质,比如特征多项式,特征根,行列式……如果只关心这类性质,那么相似的矩阵可以看作没有区别的,这时研究一个一般的可对角化的矩阵,只要研究它的标准形式——一个对角矩阵就可以了.而对角矩阵是最简单的一类矩阵,研究起来非常方便.这个过程相当于在一个等价类中选取最顺眼的元素研究.
另外,对角化突出了矩阵的特征值,而过度矩阵T反映了特征向量的信息,对角化过程的直观意义还是很明显的.再结合正交矩阵的概念,可以得到一些不平凡的结论,例如实对称矩阵总可以对角化.
实践中的矩阵对角化作用也很大.别的不说,比如要算一个一般的3阶实对称矩阵A的n次幂,n较大时,按矩阵乘法定义去计算是相当繁琐的,计算复杂度呈指数型增长.但是如果把A可以对角化(实对称矩阵总是可以对角化的),写为=T^(-1)PT,P是对角阵.那么A^n=T^(-1)P^nT,P^n的计算是很简单的,只要把各特征值^n即可,此时计算A^n的复杂度几乎与n无关.
以上纯属个人见解,仅供LZ参考:)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.