题目
高数证明题-涉及可导性与连续性
已知 F 在0处可导,且 F (0) =0.证明:存在一个在0处连续的函数G,使得对于所有x都有 F(x) = x G(x).
已知 F 在0处可导,且 F (0) =0.证明:存在一个在0处连续的函数G,使得对于所有x都有 F(x) = x G(x).
提问时间:2020-12-04
答案
F(x)在x=0处可导,那么lim(x→0)(F(x)-F(0))/(x-0)=lim(x→0)F(x)/x=F'(0)
那么定义G(x)= F(x)/x x不等于0
F‘(0) x=0
那么G(x)有定义
且lim(x→0)G(x)=lim(x→0)F(x)/x=F'(0)=G(0)
所以G(x)在x=0处连续,满足题意
那么定义G(x)= F(x)/x x不等于0
F‘(0) x=0
那么G(x)有定义
且lim(x→0)G(x)=lim(x→0)F(x)/x=F'(0)=G(0)
所以G(x)在x=0处连续,满足题意
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点