当前位置: > 线性代数中求解齐次和非齐次线性方程组,到底要不要把系数矩或增广矩阵化到行最简形?还是只要化到行......
题目
线性代数中求解齐次和非齐次线性方程组,到底要不要把系数矩或增广矩阵化到行最简形?还是只要化到行...
线性代数中求解齐次和非齐次线性方程组,到底要不要把系数矩或增广矩阵化到行最简形?还是只要化到行阶梯形?两者区别是什么?比如有些题目要是求解下列(非)齐次线性方程组的解,有些要求是基础解系和特解,这两种题型化成什么样?

提问时间:2020-12-04

答案
你所说的最简形是不是标准形?如果是的话,那么在你求解时,只要将方程组化简到行阶梯形就可以了.两者区别在于标准形是矩阵经过行初等变换和列初等变换得到的,行阶梯形只是通过行初等变换得到的.都化成行阶梯形
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.