题目
高一数学数列求和的错位相减法
一直不太懂,最好再举例说明下
一直不太懂,最好再举例说明下
提问时间:2020-12-03
答案
若数列{an}是等差数列,数列{bn}是等比数列,则数列{anbn}的前n项和可以用错位法求和.
如:
an=2n-1、bn=(1/2)^(n)
设:cn=anbn=(2n-1)×(1/2)^n
则数列{cn}的前n项和是Tn,得:
Tn=1×(1/2)+【3×(1/2)²+5×(1/2)³+…+(2n-1)×(1/2)^n】
(1/2)Tn=======【1×(1/2)²+3×(1/2)³+…+(2n-3)×(1/2)^n】+(2n-1)×(1/2)^(n+1)
两式相减【请注意大括号里的】,得:
(1/2)Tn=1×(1/2)+【2×(1/2)²+2×(1/2)³+…+2×(1/2)^n】-(2n-1)×(1/2)^(n+1)
【大括号里的可以利用等比数列求和】
(1/2)Tn=(1/2)+1-(2n+3)×(1/2)^(n+1)
得:
Tn=3-(2n+3)×(1/2)^n
如:
an=2n-1、bn=(1/2)^(n)
设:cn=anbn=(2n-1)×(1/2)^n
则数列{cn}的前n项和是Tn,得:
Tn=1×(1/2)+【3×(1/2)²+5×(1/2)³+…+(2n-1)×(1/2)^n】
(1/2)Tn=======【1×(1/2)²+3×(1/2)³+…+(2n-3)×(1/2)^n】+(2n-1)×(1/2)^(n+1)
两式相减【请注意大括号里的】,得:
(1/2)Tn=1×(1/2)+【2×(1/2)²+2×(1/2)³+…+2×(1/2)^n】-(2n-1)×(1/2)^(n+1)
【大括号里的可以利用等比数列求和】
(1/2)Tn=(1/2)+1-(2n+3)×(1/2)^(n+1)
得:
Tn=3-(2n+3)×(1/2)^n
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点