题目
lim(x->0) 1-x^2-e^(-x^2)/x*sin^(3)2x
提问时间:2020-12-03
答案
∵lim(x->0){[1-x²-e^(-x²)]/(8x^4)}
=lim(x->0){[1-x²-e^(-x²)]'/(8x^4)'} (0/0型极限,应用罗比达法则)
=lim(x->0){[e^(-x²)-1]/(16x²)} (求导化简)
=lim(x->0){[e^(-x²)-1]'/(16x²)'} (0/0型极限,应用罗比达法则)
=lim(x->0){[-e^(-x²)]/16} (求导化简)
=-1/16;
又lim(x->0){[(2x)/sin(2x)]³}
={lim(x->0)[(2x)/sin(2x)]}³
=1³ (应用重要极限lim(t->0)(sint/t)=1)
=1;
∴lim(x->0){[1-x²-e^(-x²)]/[x*sin³(2x)]}
=lim(x->0){[(2x)/sin(2x)]³*[(1-x²-e^(-x²))/(8x^4)]}
=lim(x->0){[(2x)/sin(2x)]³}*lim(x->0){[1-x²-e^(-x²)]/(8x^4)}
=1*(-1/16)
=-1/16.
=lim(x->0){[1-x²-e^(-x²)]'/(8x^4)'} (0/0型极限,应用罗比达法则)
=lim(x->0){[e^(-x²)-1]/(16x²)} (求导化简)
=lim(x->0){[e^(-x²)-1]'/(16x²)'} (0/0型极限,应用罗比达法则)
=lim(x->0){[-e^(-x²)]/16} (求导化简)
=-1/16;
又lim(x->0){[(2x)/sin(2x)]³}
={lim(x->0)[(2x)/sin(2x)]}³
=1³ (应用重要极限lim(t->0)(sint/t)=1)
=1;
∴lim(x->0){[1-x²-e^(-x²)]/[x*sin³(2x)]}
=lim(x->0){[(2x)/sin(2x)]³*[(1-x²-e^(-x²))/(8x^4)]}
=lim(x->0){[(2x)/sin(2x)]³}*lim(x->0){[1-x²-e^(-x²)]/(8x^4)}
=1*(-1/16)
=-1/16.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1你觉得贝多芬具有怎样的可贵品质?
- 2小华把自己的图书平均分成4份,把其中的一份送给了妹妹,这一份相当于妹妹原来图书的2倍,现在妹妹的图书相当于小华的几分之几?
- 3“集团有限公司”用英语怎么说
- 4儿童体内的水分占体重的5分之4,六年级小青体重为35千克,他体内的水重多少千克?
- 5若y=2asin^x-2√3asinxcosx+a+b的定义域为(0,π/2),值域是(-5,1),求a,b的值.
- 620cm比_多1/2cm;40吨增加25%后是_吨.
- 712.5米等与多少厘米
- 8GRE
- 9某工人原计划13小时生产一批零件,后因每小时多生产10件,用12小时不但完成了任务,而且比原计划多生产了60件,问原计划生产多少零件?
- 10一个非常有趣的数字四则运算问题