当前位置: > 函数f(x)=(x+a)3,对任意t∈R,总有f(1+t)=-f(1-t),则f(2)+f(-2)=(  ) A.0 B.2 C.-26 D.28...
题目
函数f(x)=(x+a)3,对任意t∈R,总有f(1+t)=-f(1-t),则f(2)+f(-2)=(  )
A. 0
B. 2
C. -26
D. 28

提问时间:2020-12-03

答案
由f(x)满足对任意t∈R,总有f(1+t)=-f(1-t),
所以函数y=f(x)的图象关于点(1,0)中心对称.
则f(x+1)关于原点中心对称,即g(x)=f(x+1)=(x+1+a)3的图象关于原点中心对称.
所以函数g(x)=(x+1+a)3为奇函数.
所以g(0)=(a+1)3=0.
则a=-1.
所以f(x)=(x-1)3
则f(2)+f(-2)=(2-1)3+(-2-1)3=-26.
故选C.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.